Measure of Noncompactness and Neutral Functional Differential Equations with State-Dependent Delay

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On state-dependent delay partial neutral functional-differential equations

In this paper, we study the existence of mild solutions for a class of abstract partial neutral functional–differential equations with state-dependent delay. 2006 Elsevier Inc. All rights reserved.

متن کامل

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Impulsive integrodifferential Equations and Measure of noncompactness

This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.

متن کامل

On Neutral Functional Differential Equations with Infinite Delay

In this paper, we prove a theorem on local existence and uniqueness of integral solutions to a class of partial neutral functional differential equations with infinite delay. Our method of proof is based on the integrated semigroup theory and the well known Banach fixed point theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics and Applications

سال: 2016

ISSN: 1733-6775,2300-9926

DOI: 10.7862/rf.2016.2